$c , G$ तथा $\frac{ e ^{2}}{4 \pi \varepsilon_{0}}$ से बनने वाली एक भौतिक राशि की विमायें वही हैं जो लम्बाई की है। ( जहाँ $c -$ प्रकाश का वेग, $G$ - सार्वत्रिक गुरूत्वीय स्थिरांक तथा $e$ आवेश है $)$ यह भौतिक राशि होगी
$\frac{1}{{{c^2}}}$$\sqrt {\frac{{{e^2}}}{{G4\pi \varepsilon_0}}} $
$\frac{1}{{{c^{}}}}\frac{{G{e^2}}}{{4\pi \varepsilon_0}}$
$\frac{1}{{{c^2}}}$$\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $
${c^2}\;\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $
यदि $P$ विकिरण दाब, $c$ प्रकाश की चाल एवं $Q$ प्रति सैकन्ड इकाई क्षेत्रफल पर गिरने वाली विकिरण ऊर्जा को प्रदर्शित करते है, तो अशून्य पूर्णांक $x,\,y,$तथा $z$ का मान, जबकि ${P^x}{Q^y}{c^z}$ विमाहीन है, होगा
List $-I$ | List $-II$ | ||
$A$. | श्यानता गुणांक | $I$. | $[M L^2T^{–2}]$ |
$B$. | पुश्ढ तनाव | $II$. | $[M L^2T^{–1}]$ |
$C$. | कोणीय संवेग | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | घूर्णन गतिज ऊर्जा | $IV$. | $[M L^0T^{–2}]$ |
यदि $E , L , M$ तथा $G$ क्रमशः ऊर्जा, कोणीय संवेग, द्रव्यमान तथा गुरूत्वाकर्षण नियतांक को प्रदर्शित करते हों, तो सूत्र $P = EL ^{2} M ^{-5} G ^{-2}$ में $P$ की विमा होगी।