$c , G$ तथा $\frac{ e ^{2}}{4 \pi \varepsilon_{0}}$ से बनने वाली एक भौतिक राशि की विमायें वही हैं जो लम्बाई की है। ( जहाँ $c -$ प्रकाश का वेग, $G$ - सार्वत्रिक गुरूत्वीय स्थिरांक तथा $e$ आवेश है $)$ यह भौतिक राशि होगी

  • [NEET 2017]
  • A

    $\frac{1}{{{c^2}}}$$\sqrt {\frac{{{e^2}}}{{G4\pi \varepsilon_0}}} $

  • B

    $\frac{1}{{{c^{}}}}\frac{{G{e^2}}}{{4\pi \varepsilon_0}}$

  • C

    $\frac{1}{{{c^2}}}$$\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $

  • D

    ${c^2}\;\sqrt {\frac{{G{e^2}}}{{4\pi \varepsilon_0}}} $

Similar Questions

एक समी. में $P$ का समय के साथ संबंध इस प्रकार है $P = P _{0} \exp \left(-\alpha t ^{2}\right)$ जहां $\alpha$ एक नियतांक है, तो $\alpha$ की विमा होगी

  • [AIPMT 1993]

$[ {\varepsilon _0} ]$ निर्वात की विघुततशीलता की विमा निरूपित करता है। यदि $M =$ द्रव्यमान, $L =$ लम्बाई, $T =$ समय तथा $A =$ विघुत धारा तो निम्न में से काँन सा विमीय सूत्र सही है ?

  • [JEE MAIN 2013]

यदि $P$ विकिरण दाब, $c$ प्रकाश की चाल एवं $Q$ प्रति सैकन्ड इकाई क्षेत्रफल पर गिरने वाली विकिरण ऊर्जा को प्रदर्शित करते है, तो अशून्य पूर्णांक $x,\,y,$तथा $z$ का मान, जबकि ${P^x}{Q^y}{c^z}$ विमाहीन है, होगा

  • [AIPMT 1992]

सूची-$I$ का सूची-$II$ के साथ मिलान कीजिए।
  List $-I$   List $-II$
$A$. श्यानता गुणांक  $I$. $[M L^2T^{–2}]$
$B$. पुश्ढ तनाव  $II$. $[M L^2T^{–1}]$
$C$. कोणीय संवेग  $III$. $[M L^{-1}T^{–1}]$
$D$. घूर्णन गतिज ऊर्जा  $IV$. $[M L^0T^{–2}]$

  • [JEE MAIN 2024]

यदि $E , L , M$ तथा $G$ क्रमशः ऊर्जा, कोणीय संवेग, द्रव्यमान तथा गुरूत्वाकर्षण नियतांक को प्रदर्शित करते हों, तो सूत्र $P = EL ^{2} M ^{-5} G ^{-2}$ में $P$ की विमा होगी।

  • [JEE MAIN 2021]